

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Heating				
Course				
Field of study			Year/Semester	
Environmental Engineering Extramural First			3/6	
Area of study (specialization	on)		Profile of study	
			general academic	
Level of study			Course offered in	
First-cycle studies			polish	
Form of study			Requirements	
part-time			compulsory	
Number of hours				
Lecture	Laboratory classes		Other (e.g. online)	
10				
Tutorials	Projects/semina			
	8			
Number of credit points				
3				
Lecturers				
Responsible for the course/lecturer:		Responsi	Responsible for the course/lecturer:	
prof. dr hab. inż. Halina Koczyk		dr hab. ir	dr hab. inż. Małgorzata Basińska	
email: halina.koczyk@put.poznan.pl		email: m	email: malgorzata.basinska@put.poznan.pl	
tel. (61) 6652532		tel. (61) 6	tel. (61) 6475224	
Faculty of Environmental Engineering and Energy		Faculty o Energy	Faculty of Environmental Engineering and Energy	
ul. Berdychowo 4, 61-131 Poznań		ul. Berdy	ul. Berdychowo 4, 61-131Poznań	

Prerequisites

1.Knowledge:

The student has knowledge in the following areas: mathematics, building physics, basics of thermal engineering and fluid mechanics, needed to formulate and solve simple tasks. The student is familiar with applicable building envelopes solutions.

2.Skills :

The student is able to solve the problems of fluid mechanics and thermal engineering, and can draw and read construction drawings.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

3.Social competencies:

The student is aware of the need to constantly update and supplement knowledge and skills.

Course objective

Acquiring by students basic knowledge and skills in the scope of the basics of water heating design

Course-related learning outcomes

Knowledge

1. The student has theoretically underpinned, organized general knowledge of issues related to the installation of central heating. - [KIS_W07]

2. The student has structured knowledge on the developments in the field of heating systems. - [KIS_W05]

3. The student knows the requirements for thermal protection and energy ratings of heating systems as well as the building regulations related to heating systems. - [KIS_W03, KIS_W04, KIS_W07]

4. The student knows the calculation methods, design techniques, tools and materials used in solving engineering tasks related to heating systems design. - [KIS_W04, KIS_W07]

Skills

1. The student can assess the heating, ventilation and hot water systems in terms of energy use - [KIS_U01, KIS_U06, KIS_U07, KIS_U08]

2. The student can design a central heating installation, configure a small heat source for the purposes of heating and hot water systems and justify the choice of individual components in terms of computation. - [KIS_U01, KIS_U06, KIS_U07, KIS_U08]

Social competences

1. The student understands the need for teamwork in solving theoretical and practical problems. - [KIS_K03, KIS_K04]

2. The student is aware of the importance and understand the non-technical consequences of engineering activities, including the impact on the environment. - [KIS_K02]

3. The student sees the need for extending their competence systematically. - [KIS_K01]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture:

Written exam (pass from 45%) (effects: W3, W4, W5, W6, W7)

The final grade from the exam takes into account the result of the exam and the partial grade from project exercises (grade not less than 4.5, is an addition of 0.5 grade)

Auditorium exercises:

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

are passed on the basis of the final test of the tasks (credit from 45%) (effects: U12, U14, U15, U16, K1, K2, K3, K4)

Design exercises:

are classified on the basis of the hydraulic part of the heating project of a small building with a heat source, made in traditional technique and oral defense of the project (effects: U12, U14, U15, U16, K1, K2, K3, K4)

Programme content

Calculations of the energy needs, delivered energy and primary energy for heating, ventilation and domestic hot water purposes - basic computational methodology based on energy certificates. Heat sources. Principles of design, selection of boilers and requirements for small boiler rooms for heating and hot water purposes. Waste gas disposal systems. Chimney classification. Examples of solutions for modern boilers. Gas supply installations for boiler rooms for the gas lighter and heavier than air. Oil fuel storage. Oil supply installations. Requirements for oil fuel storage rooms in the building. Control of boiler for the needs of heating. Hot water systems arrangements. Selection of hot water system depending on hot water demand and its variability. Methods for implementing the priority of hot water. The annual fuel demand for heating and hot water. Panel heating systems. Advantages and limitations of use. Example solutions of floor and wall heaters. Differences in selection of conventional and panel heater. Thermal and technological requirements for floor heating. Radiator - floor systems. The tasks and types of operational control. Theoretical basis of qualitative and quantitative regulation. Chart control for weather control. Pumps in heating and hot water systems - principles of selection. The use of solar energy for heating systems. Systems diagrams. Types of solar collectors. Rules for the selection and placement of collectors. Heat pumps in heating systems: the conditions of use.

Teaching methods

Bibliography

Basic

1. Koczyk H., Antoniewicz B., Basińska M., Górka A., Makowska-Hess R.: Ogrzewnictwo Praktyczne projektowanie, montaż, certyfikacja energetyczna, eksploatacja Systherm Serwis, Poznań 2009

2. Recknagel, Schramek, Sprenger, Honmann: Kompendium wiedzy OGRZEWNICTWO, KLIMATYZACJA, CIEPŁA WODA, CHŁODNICTWO 08/09 OMNI SCALA, Wrocław, 2008

3. Mizielińska K., Olszak J.: Gazowe i olejowe źródła ciepła małej mocy. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa 2005

Additional

1. Chwieduk D.: Energetyka słoneczna budynku Arkady Warszawa 2011

2. Klemm P. (red.): Budownictwo ogólne tom II. Wydawnictwo Arkady 2005

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,0
Classes requiring direct contact with the teacher	18	1,0
Student's own work (literature studies, preparation for exam,	57	2,0
project preparation) ¹		

¹ delete or add other activities as appropriate